Question

( x=log _{3} 4 )
( y=log _{5} 3^{3} )
To fund ( = ) islog
(ii) ( log _{3}(6 / 5) )
( log _{3} 10=log _{3} 5+log _{3} 2 quadleft[log _{b}=log a+log bright] )
( log _{3} 10=frac{1}{log _{5} 3}+log _{3}(4)^{1 / 2}left[log _{a} b=frac{b 1}{log _{b} a}right] )
( log _{3} 10=frac{1}{y}+frac{x}{2} )
(ii) ( log _{3}left(frac{6}{5}right)=log _{3} 6-log _{3} 5 quadleft[log frac{9}{6}=log a-log _{3} 3right. )
( frac{log _{3}left(frac{6}{5}right)}{| log _{3}left(frac{6}{5}right)=1+frac{x}{2}-frac{1}{y}} )

# find mascimum WLLO bo z = logg? ya logg? find legs 10 and log (6) in terms of u and y

Solution