Question

( A_{(g)} quad rightarrow quad 2 B_{(g)}+ )
( t=0 )
at time 't' ( quad P^{0}-P quad 2 P^{(C)} )
Total pressure ( P_{t}=P^{0}+2 P )
( 2 P=P_{t}-P^{0} )
( P=frac{P_{t}-P^{0}}{2} )
( P^{0}-P=P^{0}-frac{P_{t}-P^{0}}{2} Rightarrow frac{2 P^{0}-P_{t}+P^{0}}{2} )
( mathrm{P}^{0}-mathrm{P} Rightarrow frac{3 mathrm{P}^{0}-mathrm{P}_{mathrm{t}}}{2} )
( mathrm{K}=frac{2.303}{mathrm{t}} log frac{mathrm{P}^{0}}{mathrm{P}^{0}-mathrm{P}}=frac{2.303}{mathrm{t}} log frac{2 mathrm{P}^{0}}{3 mathrm{P}^{0}-mathrm{P}_{mathrm{t}}} )

# For a first order gas phase reaction- Alg) → 2B(9) + C(g) de initial pressure of A and P, the total pressure at time t. Integrated rate equation is- SP-P. 3P, - P.

Solution