Question

( 3^{x}=4^{x-1} )
Talking doga both side ( ln sqrt{3} x log _{2} 3^{x}=log _{2} 4^{x-1} )
( x log _{2} 3=(x-1) log _{2} 4 )
( x log _{2} 3=(x-1) times 0 quad log _{2} 2^{2} )
( x log _{2}^{3}=(x-1) times 2 log _{2} 2^{2} )
( x log _{2} 3=2(x-1) )
( x log _{2} 3=2 x-2 )
( 2=xleft[2-log _{2} 3right] )
( int x=frac{2}{2-log _{2} 3} )
(B) Ophion is rorred

# Fundamei Fundamentals of Mathematics-I E-13. If 3* = 4x-1, then x = 2log3 2 (A) 2log, 2- (B) 2-10923 (JEE (Advanced) 2013, Paper-2, (3,-1 log23 log4 3 (D) Zlog, 3-1 1

Solution