Question

( 1 leq f(theta) leq )
( operatorname{son}^{2} F(1)=1 quad f^{prime}(x)=3 )
Iel, ( f(x)=x^{3} quad F^{prime}(x)=3 x^{2} )
Value of ( F(F(f(x)))+(F(x))^{2}=g(x)(k t) )
( =fleft(Fleft(x^{3}right)right)+left(x^{3}right)^{2} )
( =Fleft(x^{3}right)^{3} cdot x^{6} )
( =left(left(x^{3}right)^{3}right)^{3}+x 6 )
( g(x)=x^{27}+x^{6} quad g^{prime}(x)=27 x^{26}+6 x^{5} )
en are Put ( x=1 ), then
( 9^{1}(x)=27+6 )

# If f(1) = 1, f'(1)= 3, then the derivative of f(f(f(x)))+(f(x)) atx=1 is (4) 15 (2) 9 (3) 12

Solution