Question
( f(x)=left{begin{array}{ll}-x & x<0 x & 0 leq x leq 1 2-x & x geq 1end{array}right. )
for ( x<0 )
[
begin{array}{rl}
f(x) & =f(f(x))
& =f(-x)
& =-(-x)=x
tan 0 & leq x leq 1
h(x) & =f(f(x))
& =f(x)=x
log x & x^{prime}(x)=f(f(x))
& =f(2-x)
& =2-(2-x)=x
end{array}
]
Therefore, ( h(x)=x ) far all ( x )

If f(x) = { x, 2-X, x < 0 Osxs1. Determine h(x) = f(f(x)). x>1
Solution
