Question
Inaginaly pait of a complex no. ( w=frac{w-w}{2 i} )
( therefore quad frac{2 z+1}{i z+1}-frac{left(frac{2 z+1}{i z+1}right)}{2 i}=-2 )
( Rightarrow frac{(2 z+1)}{i z+1}-frac{(2 z+1)}{(i z+1)}=-4 i )
( Rightarrow(2 cot ) d sin z operatorname{sen} t i y )
( frac{(2 x+2 i y+1)(1-y-x i)-(2 x+1-2 i y)(1-y+x i)}{(1-y)^{2}+x^{2}} )
( Rightarrow frac{4^{t} y}{(1-y)^{x}+x^{2}}=frac{4 x^{2} i-2 x^{i}-4 y^{2}}{x}=4 )
( Rightarrow )
( -y+x^{2}+frac{x}{2}+y^{2}=x^{x}+y^{x}-2 y+1 )
( Rightarrow y+x / 2=1 )

If imaginary part of 2z+1. is –2 then locus of z is iz +1 ... R
Solution
