Question

If log_ab = 2; log_bc = 2 and log_3c = 3+log_3a then (a+b+c) equals (A) 90 (B) 93 (C) 102 (D) 243
Solution

log_ab=2, log_b c = 2, log_3c = 3+log_3a
⇒log_b/log_a ....1. = 2, logc/logb ....2. = 2, logc = 3log3+loga
logb/loga × logc/logb = 2×2 (Multiply 1. & 2.)
⇒logc/loga = 4 ⇒logc = 4loga
⇒4loga = 3 log3+loga (from 3)
⇒ 3 loga 3log3
⇒ a = 3
⇒ logb = 2loga = 2log3 = log9
⇒ b = 9
logc = 2logb = 2log9 = log81
⇒ c = 81
⇒ a+b+c = 3+9381 = 93
Option B