Question
( sin (3+y-x), sin (x+3-y), sin (x+y-3): A P )
( Rightarrow quad delta u_{1}(x+z-y)-dot{sin }(g+y-x)=sin (x+y-z)-sin (x+z y) )
( Rightarrow 2 sin left(frac{2 x-2 y}{2}right) cos left(frac{2 z}{2}right)=2 sin left(frac{2 y-2 z}{2}right) cos left(frac{2 x}{2}right) )
( Rightarrow quad sin (x-y) cos (3)=sin (y-3) cos (x) )
( Rightarrow quad sin x cos y-cos x sin y=operatorname{sen} y cos z-sin z cos y )
( cos x )
( theta 32 )
( Rightarrow tan x cos y-cos x sin y=sin y-tan 3 cos y )
( Rightarrow quad(tan x+tan z) cos y=2 sin y )
( Rightarrow tan x+tan z=2 tan y )
( Rightarrow ) tanx, truiy, tang are in AP.

If sin(z + y - x), sin(x + z-y), sin(y + x - Z) be in A.P., prove that tanx, tany, tanz are also in A.P.
Solution
