Question

( begin{aligned} R|sqrt{1-x^{2}}| frac{1}{alpha} mid &=sin ^{-1}(sqrt{mid-x^{2}}) x &=cot ^{-1}left(frac{x}{sqrt{1-x^{2}}}right) end{aligned} )
¡AT Now squating on looth sidel, ( 1+6 x^{2}=6left(1-x^{2}right) )
( 1+6 x^{2}=6-6 x^{2} )
( frac{12 x^{2}-5}{x^{2}=5}+x=sqrt{frac{5}{12}-frac{1}{2} sqrt{3}} )
( 0 .(9-r)=(5-3)=2 )

# If solution of cot (sin then value of (q -r) is V7 - x ) = sin (tan" (XV6 )), X+0 is where q, r are prime numbe 2 Vr

Solution