Question

Witical wareleng/n =w Wanclergan when ( k . E ) is nownal=w When ( k cdot epsilon ) is dowbled ( =w_{2} ) ( k in_{1}=frac{1}{w_{1}}-frac{1}{w_{0}}, k in_{2}=2 k E_{1} )
( k in_{2}=frac{1}{w_{2}}-frac{1}{w_{0}}=frac{2}{w_{1}}-frac{2}{w^{0}} )
( Rightarrow quad frac{1}{w_{2}}=frac{2}{w_{1}}-frac{1}{w} )
subtettuling values ( frac{1}{w^{2}}=frac{2}{2200}-frac{1}{2600}=frac{2600-1100}{2860000} )
( frac{1}{w^{2}}=frac{1500}{2860000} Rightarrow w_{2}=frac{2860000}{1500} )
( w_{2}=1906.667 )

# If the critical wavelength of tungsten is 2600A, what is the energy of a quantum at this wavelength in eV? Further, calculate the wavelength necessary to produce photo electrons from tungsten having twice the kinetic energy of those produced at 2200A.

Solution