Question

The function mustbe cuen
[
therefore e^{r} f(-x)=f(x)
]
( f(x)=frac{a^{x}-1}{x^{m}left(a^{x}+1right)} )
( f(-x)=frac{frac{1}{a^{5 x}}-1}{(-x)^{n}left(frac{1}{a^{x}}+1right)}=frac{1-a^{x}}{(-x)^{n}left(1+a^{x}right)} )
( 0^{circ} cdot(-x)^{n}=-x^{n} quad x^{n} ) should
be odd function
: " n should be odd
Anis
(D) ( n=-frac{1}{3} )

# If the graph of the function f(x) = a* -1 is symmetric about y-axis, then n is equal to: x" (a* +1) (1) 2 (2) 2/3 (3) 1/4 (4) - 1/3

Solution