Question

( operatorname{sen}^{n}: x^{2}+p x+12=0 )
bt moots are ( 1 x & 3 x )
( x=frac{-p pm sqrt{p^{2}-48}}{2} )
( alpha=frac{-p+sqrt{p^{2}-48}}{2} ) and ( beta=frac{-p-sqrt{p^{2}-y}}{2} )
( A^{prime}(x rightarrow) frac{alpha}{beta} ) 닥 ( frac{mid x}{3 x}=frac{1}{3} )

# If the roots of x2 + px + 12 = 0 are in the ratio 1 : 3, then value(s) of p are (a) 3 (b) 8 (c) 6 (d) -8

Solution