Let” f(x)= _*(1- acosx) - bsin x X=...
Question
Fullscreen

Let” f(x)= _*(1- acosx) - bsin x X=0 and f(0)=1. The value of a and b so that fis a continuous function are: A 5/2.3/2 B 5/2,-3/2 C -5/2,-3/2 D None of these

JEE/Engineering Exams
Maths
Solution
103
Rating
3.0 (1 ratings)
Fullscreen
( f(x)=frac{2(1+a cos x)-b sin x}{x^{3}-} ) ( f(0)=1 ) ff ( quad(t, f(x)=f(0) ) ( x rightarrow 0 ) then, 4 is ontinews ( lim _{x rightarrow 0} f(x)=lim _{x rightarrow 0} frac{x(1+a cos x)-b sin x}{x^{3}} rightarrow frac{0}{0} operatorname{fos}_{n} ) ( f(0)=lim _{x rightarrow 0} frac{(1+a cos x)+x(-a sin x)-b cos x}{3 x^{2}} ) ( f(0)=lim _{x rightarrow 0} frac{1+a cos x-a x sin x-b cos x}{3 x^{2}} ) When we substitute ( x=0 ), denominater is "O" but numerator is ( 1+a-b ) So, for it to be continaus it should be ( i n frac{0}{0} operatorname{for} n cdot 30, quad 1+a-b=0 rightarrow 0 )
Quick and Stepwise Solutions Just click and Send Download App OVER 20 LAKH QUESTIONS ANSWERED Download App for Free