Question
( f(x)=x cos (x(x+[x))) )
begin{tabular}{l|c}
( ln 5 ) & ( lim _{x rightarrow+infty} x cos (x(x+2)) )
( =lim _{x rightarrow 2^{+}} x cos (x(x+1) ) & ( log 2 cos (4 x) )
( Rightarrow 2 cos (3 x) ) & 2
end{tabular}
( therefore ) Not continious
At ( x=1 ) ( lim _{x rightarrow 1^{-}} x cos (pi(x+0)) lim _{x rightarrow++} x cos (pi(x+1)) )
( 1 cos (x) quad-1 quad 1(cos (2 pi) )
Not conninions
( A+x=0 )

Let [x] be the greatest integer less than or equals to x. Then, at which of the following point(s) the function f(x)= XCOSA(*+]) is continuous? A X= 2 B x=1 x=-1 x=0
Solution
