Question # Letf(x) = log (sin x), (0

# Letf(x) = log (sin x), (0

Solution [
f(x)=log _{e}(ln 17) cdot(00) )
( a=left(f(0,9)^{prime}(alpha), l, b=(text { fug })(alpha)right. )
( operatorname{fog}(x)=log _{e}[lim [lim (e-4)] )
( operatorname{fog}(x)=log _{e} e^{-x} )
( operatorname{fog}(x)=-x cdot Rightarrow operatorname{fog}(alpha)=-alpha )
( f(x)=-1 Rightarrow(operatorname{fog})^{prime}(alpha)=-1 )
The ( b=-alpha . )
[
f quad a=-1
]
foom oblim ( a alpha^{2}-b alpha-a=1 )
( tan ^{2}-b alpha-a )
( -x^{2}+x^{2}+1=1=R 4 S )
So, option ( b ) is cossrect Pleaye give your feedback 9306109678

Solution