Question
( lim _{x rightarrow 0} frac{e^{x}-e^{-x}-2 x}{x-sin x} )
( int frac{0}{0} ) form
a Apply I thopital's rule ( lim _{x rightarrow 0}left[frac{e^{x}+e^{-x}-2}{1-cos x}right] )
idgain ( frac{0}{0} ) form, applying ( L^{prime} ) teopital's ( lim _{x rightarrow 0}left[frac{e^{x}-e^{-x}}{sin x}right] )
again ( frac{0}{0} ) form, apply ( L^{prime} ) Hopital's
( lim _{x rightarrow 0}left[frac{e^{x}+e^{-x}}{cos x}right] )
( frac{e^{0}+e^{0}}{cos 0}=frac{1+1}{1} )
2
j Obtion
ce) is correct.

lim imet-e *–2x 2A is equal to x+0 X-sin x (a) 1 (c)2 (b)-1 (d) 0
Solution
