Question

( lim _{x rightarrow 0} frac{x operatorname{lot} 4 x}{cot ^{2} 2 x sin ^{2} x} )
when ( lim _{x rightarrow 0} frac{sin x}{x}=lim _{x rightarrow 0} frac{x}{sin x}=1 )
( lim _{x rightarrow 0} frac{tan }{x}=lim _{x rightarrow 0} frac{x}{tan x}=1 )
( lim _{x rightarrow 0} frac{x cdot tan ^{2} 2 x}{sin frac{1}{x}+frac{1}{4}left(frac{4 x}{tan 4 x}right) cdot sin left(frac{tan 2 x}{2 x}right)^{2}left(frac{4 x^{2}}{sin ^{2} x}right)} )
( =frac{1}{4} x^{4} times(1)^{2} times sin x(1)^{2} )

# Lim - X cot(4x) is equal to: X-0 sin?x cot? (2x) (1) 0 (2) 2 (34 (4) 1 lets,

Solution