Question
( operatorname{limit}_{x rightarrow 1}(1-x+[x-1]+[1-x])= ) where ( [x] ) denotes greatest
![Check here step-by-step solution of 'limit_x→1(1−x+[x−1]+[1−x])= where [x] denotes greatest integer function' question at Instasolv!](https://images.instasolv.com/QuestionBank/5d0358f073200b10f89d4649/crop_image.png)
( operatorname{limit}_{x rightarrow 1}(1-x+[x-1]+[1-x])= ) where ( [x] ) denotes greatest
integer function
( (a) 0 )
(b) 1
( (c)-1 )
(d) does not exist
Solution
![limit_x→1(1−x+[x−1]+[1−x])= where [x] denotes greatest integer function](https://instasolv1.s3.ap-south-1.amazonaws.com/QuestionBank/5d0358f073200b10f89d4649/solution_5d035a4873200b10f89d466c.png?version=1)
[
lim _{x rightarrow 1}(1-x+[x-1]+[1-x])
]
( R H L )
[
begin{aligned}
lim _{x rightarrow 1^{+}} &(1-(1+delta x)+[y(1+delta x]+[y-1-delta x])
&=(-8 x+0+-1)=-1
end{aligned}
]
LHL
[
begin{array}{l}
lim _{x rightarrow 1^{-}}(1-(1-delta x)+[1-delta x-1]+[1-(1-delta x)])
quad=(1-1+delta x+[-delta x]+[d x])
quad=0+delta x-1+0=-1
R H L=angle H L=text { finite Nalve }
end{array}
]
limit exist and is equal ( to_{}[-1] )
[
Ans=-1
]