Question

Produied do point D and E respectively 8 BP b ised ( +infty ) angle ( angle angle B D ) y ( angle B C F ) then we have to ( F )
( Rightarrow mid x+y=11 )
Fince ( B P & C P )
the ( angle C B D & angle B )
then,
[
begin{array}{r}
angle C B P=angle P B D
B angle B C P=angle P C E
end{array}
]
form Figure
[
begin{array}{l}
x+2left(B P+angle P B D=180^{circ}right.
Rightarrow A+a+a=180^{circ}
Rightarrow quad x+2 a=180^{circ} rightarrow
7+angle B C P+angle P C E=180^{circ}
Rightarrow y+2 b=180^{circ} rightarrow 6
end{array}
]
Adding (2) ( p(3) ) we get ( x+2 a+y+2 b=180^{circ}+180^{circ} )

# MAT D and 1. In figure 6.130, the sides AB and AC of AABC are produced to points D and Eres If bisectors BP and CP of ZCBD and ZBCE respectively meet at point P, then find respective LINES AND 20. In figure 6 620 2. In figure P FIGURE 6.130

Solution