Question

( y=e^{m tan ^{+} x} )
( y_{1}=frac{d y}{d x}=e^{operatorname{mitan}^{+} x} cdot frac{m}{1+x^{2}} )
( Rightarrow y_{1}=frac{y m}{1+x^{2}} )
( Rightarrowleft(1+x^{2}right) y_{1}=y m )
Differentiatif again
( left(1+x^{2}right) y_{2}+2 x y_{1}=m y_{1} )
( Rightarrowleft(1+x^{2}right) y_{2}+(2 x-m) y_{1}=0 )
Hence, proved.

# mtan's e then show that (1+2) + (x - m 4, so

Solution