Question

( begin{aligned} & frac{m+sqrt{m^{2}-n^{2}}}{m-sqrt{m^{2}-n^{2}}}-frac{m-sqrt{m^{2}-n^{2}}}{m+sqrt{m^{2}-n}}, frac{n^{2}}{4 m sqrt{m^{2}-n^{2}}} =&left[frac{(m+sqrt{m^{2}-n^{2}})^{2}-(m-sqrt{m^{2}-n^{2}})^{2}}{(m-sqrt{m^{2}-n^{2}})(m+sqrt{m^{2}-n^{2}})}right] frac{n^{2}}{4 m sqrt{m^{2}-n^{2}}} end{aligned} )
( =left[frac{eta a^{2}+m^{2}-a^{2}+2 m sqrt{m^{2}-n^{2}}}{2 a^{2}-x^{6}+n^{2}}-left(m^{2}+m^{2}-a^{2}-2 m sqrt{m^{2}-n^{2}}right) frac{m^{2}}{4 m sqrt{m^{2}}-n^{2}}right] )
( =frac{4 m sqrt{a^{2}-n^{2}} times frac{11^{2}}{4 m sqrt{m^{2}}-n^{2}}}{x^{2}} )
An

# n2 m+m-n? m - m - nº m-mº-n? m + m2-n? 4mm - nº

Solution