Question

m.
Sccondeng to the question hane
[
N=-0 quadleft(frac{n_{2}-n_{1}}{x_{2}-x_{1}}right)
]
( therefore quad N=frac{1}{m^{2} s} )
Demensional fommla of ( N^{prime}=left[L^{-2} T^{-1}right] )
( rightarrow ) foumine of ( n_{1} ) and ( n_{2}=frac{1}{L^{3}}=left[L^{-3}right] )
( rightarrow ) formula of ( x_{1} ) and ( x_{2}=left(L^{prime}right) )
Row, wrill sulusitute the values (DF's) miskem fommla/ eq ( ^{n} ) guien in the question
[
begin{array}{l}
frac{Nleft[x_{2}-x_{1}right]}{n_{2}-n_{1}}=0
frac{left.left[L^{-2} T^{-1}right]{L}^{prime}^{prime}right]=0}{left[L^{-3}right]}=0
{left[frac{L^{-1} T^{-1}}{L^{-3}}right]=0}
end{array}
]
the dimerswinal fommber ( D=left[M^{0} L^{2} T^{-1}right] )

# Number of particles is given by n=- D y crossing a unit area perpendicular to X-axis in unit time, where n, Xz - X, and n, are number of particles per unit volume for the value of x meant to X2 and X4. Fine dimensions of D called as diffusion constant MOLT-3 ( 021-1

Solution