Question

( x^{3}-a x^{2}+b x-c=0 )
Whits root be ( alpha, beta, r )
( alpha+beta+gamma=-frac{(-a)}{1}=a-0 )
( alpha beta+beta gamma+alpha gamma=b )
( alpha beta gamma=c )
Au to question,
rusis of ( operatorname{cgm} x^{3}+p x^{2}+q-19=0 )
( operatorname{arc}(alpha+1),(beta+1) operatorname{ard}(gamma+1) )
as in the abone example
( Rightarrow a+b+c=19-1 )
( 2 a+b+c=18 )

# Q.22 the If the roots of the equation, 33 +Px2 + Qx-19=0 are each one more than the roots of the equation #3 - Ax2 + Bx – C = 0, where A, B, C, P & Q are constants then the value of A+B+C = (A) 18 (B) 19 (C) 20 (D) None of these

Solution