Question

( x^{2}-(a-3) x+a=0 )
Doets ar ronou than 2 .
(c) ( 1 geqslant 0 )
(ii) ( frac{-b}{2}>0 )
( Rightarrow(a-3)^{2}-4 a geqslant 0 quad 3 frac{a-3}{2}>0 )
( Rightarrow a^{2}+9-10 a geq 0 )
( Rightarrow a>3 )
( Rightarrow(a-9)(a-1) geqslant 0 )
( Leftrightarrow O R>4 )
( frac{t_{1}-j+}{g} frac{a-3>4}{3 a>7} )
( f(0)>0 )
(0) ( quad frac{-8}{4} ) x 4
( int_{0}^{+} frac{(v) f(2)>0}{4-2(a-3)+a} )
( 2 a<10 )
( 2 quad>1 )
( 70 quad therefore quad a in[9,10) )
( B )

# Q.52 If roots of x2 – (a – 3)x + a = 0 are such that both of them is greater than 2, then- (A) a= [7,9] (B) a € [9, 10) (C) a € 19,7] (D) a € 19, 12]

Solution