represent one organ. Paste them on ...
Question

# represent one organ. Paste them on A4 sized sheet making the Making the complete hun Place all your science holiday homework in beautiful handmade folder MATIS 01. Find the sum of -a) 256 and -312 b)-319 and -136 02. Find the value of :- (-6) + (-9)+(-41) Q3. Simplify - 158 (-63)-(-45)+(-16) Q4. Find each of the following product:- a) 10X(-6)X(-1) ii) 0x192x(-32) Q5. Find the value of 1695x678-695x678 Q6. Find the Multiplicative inverse of Q7. Write down a pair of Integers whose i) Sum is -5 Q8. Arrange in Descending order:- 35 35 09. Convert into mixed fractions:-i) 1) 243 010. Which of the following fraction are equivalen Q11. Find the sum: D + 1) 3 + Q12. Simplify:- 5-35 +2 ii) Difference is -9 32 LOIN

Other Exams
Maths
Solution
111
4.0 (1 ratings)
0,9 ( (-i) quad 32 / 1 ) ( (ln ) frac{243}{13} ) ( = ) (a) ( 256-812 ) 7 ) ( 32(4-0 ) 243 28 (a) ( 256+(-312) ) ( 256-312=-56 ) ( 4 cdot frac{4}{7} quad(5)-319+(-136)=-319-136=-455 ) to convert mixed ( (-6)+(-9)+(-4)]=-6-9-41=-56 ) fortion ( frac{sin (1)}{21} operatorname{and} frac{3}{8} ) ( frac{1}{3} ) and ( frac{1}{3} ) eguiralent (a) ( 10 times(-6) times(-1)=10 times 6=60 ) ( (b) quad 0 times 192 times(-32)=0 ) 36 (i) ( frac{2}{5}+frac{3}{8}=frac{2}{5} times frac{8}{8}+frac{3}{8} times frac{5}{5} ) multiplicative inverse of ( -1 / 3 ) is ( 1 /-y_{3}=-3 ) ( frac{16}{40}+frac{15}{40}=frac{16+15}{40}=frac{31}{40} quad frac{(07)(1) operatorname{sum} 38-5}{-2-3=-5}[-2,-3 ) are integers ( (i i) quad 3 y_{q}+1 sqrt{6}=frac{27+1}{9}+frac{6+5}{6} ) ( -1+(-4)=-5[-1,-4 ) ar integeng ( Q 8 ) Descending order: ( =frac{28}{9}+frac{11}{6}=frac{28 times 6}{9 times 6}+frac{11}{6} times frac{9}{9} ) 8,14,417,13,56 ( =frac{168}{54}+frac{99}{54}=frac{168+99}{54}=frac{267}{54} ) ( frac{3}{8} times frac{7}{7} 1 frac{5}{14} times frac{4}{4} 5 frac{3}{4} times frac{14}{14}+frac{5}{7} times frac{8}{8} ) 812 ( 5 y=31 / 4+21 / 3 ) ( frac{21}{56} 1 frac{20}{56}+frac{42}{56}+frac{40}{56} ) ( frac{6 times 5+1}{6}-frac{4 times 3+1}{4}+frac{3 times 2+1}{3} ) esending order ( =frac{42}{56}, frac{40}{56}, frac{21}{56}, frac{20}{56} ) ( frac{31}{6}-frac{13}{4}+frac{7}{3}=frac{31}{6} times frac{2}{2}-frac{13}{4} times frac{3}{3}+frac{7}{3} times frac{4}{4}=frac{51}{12} )