Question

( cos (x) )
as ( x rightarrow pi / 2=1 )
( [cos (x)] ) as ( x-frac{pi}{2}=0 )
( [cos x] ) as ( x rightarrow frac{pi}{2}+=1 )
( operatorname{sen} operatorname{lom}_{x rightarrow pi / 2^{-}} frac{5 sin [cos x]}{[cos x]+2}=frac{0}{2}=0 )
( lim _{x rightarrow pi / 2^{+}} frac{sin [cos x]}{[cos x]+2} eq 0 )
( therefore ) does not exist.

# Single Choice If [] denotes the greatest integer functiors, 5 sn[cosx] cosx]+ is : (.) denotes greatest integer lim function). A 0 FA B 1 D Does not exist

Solution