Question
( P(x)=a^{x^{2}+b^{x+c}}+v e^{i n} )
( (a+d)^{2}-4 a(a+d) geqslant 0 p(x)=0 )
( (1+k)^{2}-4(1+2)^{2}=10^{circ} quad alpha+beta=-frac{b}{a} quad, quad alpha beta=frac{c}{a} )
( frac{k^{2}-6 k-3 geqslant 0}{(k-63)^{2}-12 mid geqslant 0} quad alpha+beta=-1-frac{d}{a} quad alpha B=1+2 frac{d}{a} )
Ithas to beperfect thas to roots to al =Ka Square, because roots 10
be integer.
[
begin{array}{l}alpha+beta+alpha beta=-1-k+alpha+2 k alpha+beta+alpha beta=k=1end{array}
]
( (k-63)^{2}-12=alpha_{1}^{2} quad alpha in I )
( frac{(k-6)^{2}}{16}=frac{alpha_{1}^{2}}{4}+12 )
( therefore quadleft(K-frac{63}{K}=frac{4}{15} 7^{2}right. )

Suppose the quardratic polynomial PLUS - 9224 butČ has positive Coefficients apb, C in AP in that order II pcu 20 has integers r oad & and then 2+B+ XBO equals to
Solution
