Question

( frac{2 u}{(66)} frac{4}{x rightarrow 0^{2}}-sin left(frac{left(frac{(cos x)^{m}-1}{cos x-1}right)(cos x-1)}{x^{n}}right) )
( =frac{1}{x-20}-sin left(frac{pi m cdot(cos x-1)}{x^{n}-}right) )
( =frac{mu}{x rightarrow 0}-frac{m x cdot frac{2 sin (1-cos x)}{x^{2}} cdot sin ^{2} x}{2} )
( =sin left(frac{pi m}{2}right) )
ist
( frac{operatorname{sen}^{prime} 5 t}{sin y frac{n}{2}-frac{1}{3}+2} )

# Te(1-cos” x) 66. If lim sin x->0 exists, where m,ne N, then the sum of all possible values of n is

Solution