Question

The value of the integral ∫^1_0(x+1)^2 e^x dx is:
a) (2e-1)
b) (1-2e)
c) (1+2e)
d) None
Solution

∫^1_0 (x+1)^2 e^x dx = ∫^1_0(x^2e^x+e^x+2xe^x)dx
[^1_0 x^2e^x-2∫xe^xdx+e^x+2∫ae^xdx]
= [ex(x^2+1)]_0^1
= e[1+1]-(1)
= (2e-1) Ans 9