Question
The value(s) of x for which the function
T 1-x . x<1
f(x)= (1-x)(2-x), 1
( f(x)=|-x| quad x<1 )
( frac{(1-x)(2-x)}{3-x} frac{1 leq x leq 2}{x>2} )
has chancosto fail
It nets only at ( x=1,2 ) Lets cheas it
( a+x=1, quad f(1)=0 )
[
operatorname{lif}_{rightarrow 1} f(x)=0
]
( therefore ) Continuous at ( x=1 )
ad ( n=2 )
[
fleft(x^{+}right)=1
]
( f(2)=0 )
( Rightarrow ) limit does not exist
( Rightarrow ) dis continousat ( n=2 )
Ans
(B)

The value(s) of x for which the function
T 1-x . x<1
f(x)= (1-x)(2-x), 12 fails to be
continuous is(are) :
Α
1
B
2
C
3
All real numbers
Solution
