Question

( operatorname{ses} y=frac{x^{2}}{1+x} )
( -1 leq cos y leq frac{1}{2} ldots 1-n )
When woy ( =-1 ), ( x^{2}+x+1=0 )
When wy ( =1 ), ( x^{2}-x-1=0 )
( x=frac{1 pm sqrt{5}}{2} )
[
begin{array}{l}
frac{left(2^{1}right)^{5}-1 frac{15}{2}^{5}}{x inleft[frac{1-sqrt{5}}{2}, frac{1+sqrt{5}}{2}right]}{2}
end{array}
]

# u 12 14. Domain of the explicit form of the function y represented implicitly by (1 + x) cos y - x2 = 0 is: the equation (a) (-1,1] (0) (-1,0) (0) (-11-25 © 14v5] () [0, 1405]

Solution