Question

( H cdot M cdot ) of ( a ) and ( b=4 )
( Rightarrow quad frac{2}{(1 / a+1 / b)}=4 quad Rightarrow quad frac{1}{a}+frac{1}{b}=frac{1}{2} )
( Rightarrow quad alpha(a+b)=a b quad longrightarrow )
Given ( a, 5, a, b ) are in ( triangle . P ).
So ( quad, quad a+q=2|5|=10 quad rightarrow )
and
( 5+b=2 q rightarrow(3) )
Eliminating b foom
(1) and (3)
( alpha(a+2 q-5)=a(2 q-5) )
( Rightarrow quad 7 a+49-2 a q=10 )
From
2. ( x=40 )
[
3 a-2 a q=-30
]
( operatorname{lsing}(2) )
( a[3-2(10-a)]=-30 )
( Rightarrow quad 2 a^{2}-17 a+30=0 )
QSowing we get ( a=b ) and ( L .5 )
Equivalint values ob ( q=4 ) and 7.5
( Q B_{0}, quad|q-a|=2 ) and 5

# unity. If (3-36 +20%)4n+9 + (2 +30-30%)4n+3 +(-3 +20 + 30%)4n+3 = 0, then possible value(s) of n is (are) (S) 4 (D) Let the harmonic mean of two positive real numbers a and b be 4. If q is a positive real number such that a, 5, q, b is an arithmetic progression, then the value(s) oflq-al is (are) (T) 5 wwwwwwwwwwwww Answers for the above question

Solution