Question
( frac{left.1 a n^{-1}right)^{1+x^{2}+1}}{x}=frac{pi}{2}=frac{1}{2} tan ^{n} x )
let ( x=79 n theta )
( tan 1 sqrt{1+tan ^{2} theta}+1 )
1970
( tan ^{+}left(frac{+cos theta}{sin theta}right) )
( tan ^{-1}left(frac{x+2 cos ^{2} theta / 2 x}{2 sin theta / 2 cos 8 pi}right) )
Tant ( (cot theta / 2) )
( int operatorname{tgn}left(frac{pi}{2}-theta / 2right) )
( =frac{pi}{2}-frac{1}{2} pi n+x d )

V/4 | | (छ. ग. 2009
Solution
