Question
( log _{operatorname{das}} x+operatorname{cog}_{6} 4 y=4 )
( operatorname{cog}_{x} 225-operatorname{cog}_{y} 64=1 )
( mid log _{a} b=frac{1}{log _{b} a} )
cet ( log _{225} x=A quad & quad log _{64} y=B )
now ( quad A+B=4 quad Rightarrow B=4-A )
( frac{1}{A}-frac{1}{B}=1 quad ) (put value of
( frac{1}{A}-frac{1}{4-A}=1 )
( frac{4-2 A}{4 A-A^{2}}=1 quad Rightarrow quad begin{array}{l}A^{2}-6 A+4=0 text { Sridharacharya }end{array} )
( Rightarrow A=frac{6 pm 2 sqrt{5}}{2} Rightarrow frac{sqrt{A}=3 pm sqrt{5}}{B=4-A=4-(3 pm sqrt{5})} 4 sqrt{B=1 pm sqrt{5}} )
( log _{235} x=A=3 pm sqrt{5}left(operatorname{lct} tan 0, x, operatorname{and} x_{2}right) )
( log _{225} x_{1}+operatorname{cog}_{225} x_{2}=3+85+3-frac{12}{3}=6=log _{225} x_{1} x_{2} )
similarly ( x_{1} x_{2}=left(15^{2}right)^{6}=15^{12} )
( log _{64} y_{1}+log _{69} y_{2}=1+y_{5}+1-sqrt{5}=1+1=2-log _{64} y_{1} y_{2} )
( y, y_{2}=(64)^{2}=left(2^{8}right)^{32}=2^{12} )
( left[left(x, x_{2}right)left(y, y_{2}right)=15^{12} cdot 2^{12}=30^{12}right. )

V20 13. If (x,y,) and (x,y,) are the solution of the system of equation. log225(x) + logo(y) = 4 log, (225) – log, (64) = 1, then show that the value of log20(x,y,x,y) = 12.
Solution
