Question

for ( n e^{t}, frac{1}{lambda}=R_{n} z^{2}left[frac{1}{2^{2}}-frac{1}{4^{2}}right] )
For ( K, frac{1}{lambda}=R_{n}left[frac{1}{n_{1}^{2}}-frac{1}{n_{2}^{2}}right] )
Shuce ( lambda ) is same
( therefore quad Z^{2}left[frac{1}{2^{2}}-frac{1}{4^{2}}right]=left[frac{1}{n_{1}^{2}}-frac{1}{n^{2}}right] )
( 2=2 )
( 84left[frac{1}{4}-frac{1}{16}right]=left[frac{1}{n_{1}^{2}}-frac{1}{n_{2}^{2}}right] )
on soluins we get
( n_{1}=1 ) and ( n_{2}=2 )
Ans ( =(2) n=2 Rightarrow 1 )

# VU) 2 6. What transition in a hydrogen spectrum would have the same wave length as in Balmer transition n = 4 to n = 2 of Het spectrum - (1) n = 3+1 121=251 (3) n = 413 (4) None

Solution